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STABILITY ANALYSIS OF FINITE DIFFERENCE SCHEMES 

PROBLEMS 
FOR TWO-DIMENSIONAL ADVECTION-DIFFUSION 

ALAIN RIGAL 
Laboratoire d'Analyse N d r i q u e ,  Universitt! Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France 

SUMMARY 
This paper develops a stability analysis of second-order, two- and three-time-level difference schemes for the 
2D linear diffusion-convection model problem. The corresponding 1D schemes have been extensively 
analysed in two previous papers by the same author. Most of these 2D schemes obviously generalize 1D 
schemes, i.e. their stencil only uses the nearest points and defines 'product difference schemes'; however, the 
stability results are not always the exact generalization of the 1D stability properties. Moreover, the 1D non- 
viscous MFTCS scheme may only be generalized if one uses a nine-point scheme. Numerical experiments for 
different values of the cell Reynolds number allow a comparison to be made between the theoretical and 
numerical stability limits. 

KEY WORDS Diffusion-convection Fourier analysis Stability Artificial viscosity 

1. INTRODUCTION 

In two previous papers', we analysed the properties of second-order finite difference schemes for 
the one-dimensional advection-diffusion problem. These papers, devoted to two- and three-time- 
level schemes respectively, will be referred to hereafter as R1 and R2. In the present paper we 
study the stability of the schemes analysed in R1 and R2 when applied to multidimensional 
advection-diffusion problems. 

Many author?' ' have developed stability analyses of different two- and three-level schemes. 
Thus several results in this paper, in particular for basic schemes, are not new. They are, however, 
detailed because our approach provides complementary information. Moreover, the stability of 
the fundamental FTCS (forward time, centred space) scheme was erroneously analysed by 
Fromm in 1964.12 This incorrect result was promulgated by Roache,13 but was corrected several 
years 5 *  Our previous stability result relative to the FTCS scheme was only correct for 2D 
isotropic problems;" as proved in R1, the restriction of this result to the 1D problem is exact. 
Among the papers quoted above, the recent work of Hindmarsh et aL3 is by far the most 
complete. 

The analysis of the schemes will be described in detail for 2D problems and may be generalized 
without difficulty to multidimensional problems (in R", n 2 3); indeed, the crucial differences 
appear between 1D (R1 and R2) and 2D problems. 
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We consider the linear homogeneous advectiondiffusion problem 

d,u=Au in R x]O, T [ ,  a bounded domain of Rz, with initial and boundary conditions, (P) 

i.e. 

4 x 9  Y ,  O)=uo(x, Y )  on Q, 

where the ci are the advection velocities and the K i  are the diffusion coefficients. 

when !2 is a bounded interval of R. 
Firstly, let us recall the main classes of schemes analysed in our previous papers (R1 and R2) 

The two-level schemes analysed in R1 may be written 

(I-BAtA,) vn+l = [I+(l -6)AtA,] v", (2) 
where A h  is a space difference operator which realizes an approximation of order at most two of 
the diffusion-convection operator A, and 0 belongs to [0, 11 (0=0, explicit schemes). 

In R2, two classes of three-level schemes are considered 

(a) Weighted (W) schemes deduced from classical two-step schemes used for differential 

(b) Leap-frog (LF) schemes using space- and time-centred differencing. 

The W-schemes are defined by 

equations 

(e + +lUy+ 1 - 2eu; + (e- +)uy- 1 = A ~ A  h u j ,  - ee Lo, l1, (3) 
where V j  is a linear combination of uJ, uJ" and uJ-' and A, is defined as above in (2). 

The LF schemes are defined by 

where C j  is as defined above and B, is a space difference operator yielding second-order 
approximations of the diffusion term. 

The leap-frog Du Fort-Frankel (LFDF) scheme 

cannot be written as (4). 
The generalization of schemes (2)-(5) to multidimensional problems is straightforward if we 

consider second-order space operators using five points in Rz or seven points in R3 ('product 
schemes' of 1D schemes). 

2. TWO-LEVEL SCHEMES 

We first consider explicit schemes which allow us to focus on the properties of space differencing. 
Moreover, R1 showed the interesting properties of explicit schemes for solving strongly 
convective problems. 

2.1. Explicit schemes 

We consider 
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with the following definitions of A,,, p =  1, 2, 3: 

modified FTCS scheme (MFTCS) analysed in the paper of Hindmarsh et al.;3 

A~~=KK,D:D;-C~~,D;-C,(~-~,)D~,+K~D~D~--C~~,D,--C~(~-~Z)DO~, (8) 

weighted upstream scheme (FTUW) which gives the FTCS scheme when 6, =6, =O and the 
FTUS scheme (basic upstream scheme) when 6, = d2 = 1; 

D:D; -clDox-czDoy, (9) 
K2 D: D; + 

1 + c , h , / 2 K 1  1 +c2h, /2K,  
K l  

= 

Samarskii schemeI4 including an a priori correction of the artificial viscosity; where D: , 0; and 
Do, are the forward, backward and centred difference operators following the x-axis, with a 
constant space step h,. 

Remark. In contrast to the MFTCS scheme studied in R1, the modified scheme (7) does not 
correct the artificial viscosity; indeed, in the artificial viscosity of the 2D FTCS scheme a cross- 
derivative a;,u appears which cannot be equalized with difference operators when using a five- 
point scheme. Dukawicz and Ramshaw,” who use finite differences, and Hindmarsh et al.,3 who 
use finite elements, proposed schemes which take this observation into account. In an analogous 
way we define a nine-point scheme, MFTCD (cross-derivative), which we will analyse in a further 
paragraph. 

The stability of the difference scheme (6) applied to the Cauchy problem associated with (P) 
results from the analysis of the amplification factor 

gp(cpl, cp2)=l-Z,, with cpi=wihi in [0, 711, (10) 

( 1  1) Z,= 2dp,(l  -cos cp,) + 2d,,(l-  cos p2) + i(pl sin p, +pz sin cp,) 

where the d,, depend on the A,, in (7)-(9). In terms of the characteristic parameters 

At 
Y.  = K. - 

P = c .  - At 

parabolic mesh ratio, ’ 

hyperbolic mesh ratio, hi ’  

cihi 
a,=--- cell Reynolds number, ’ 2 K i ’  

the coefficients dPi are defined by 

for A,,,, 

for A,,, 

P? 

Pi6i  

d l i = r i +  - 
2 

d2 ,=r i+  - 
2 

P ,  
2 

d3,=ri(1 +a, ) - ’+  2 for A3h. 
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Prescribing the stability condition 

we obtain the following theorem. 

Theorem 1 

The explicit scheme (6) is stable if 

d,,+dP,<&, 

Prooj We drop the index p and study the extrema of 

G(cp 1 9 Cp2 ) = 1 g(Cp 1 , 'pz ) I = 1 -4d 1 (1 -cos CP 1 ) - 4d2 (1 -cos Vz) + 4d: (1 -cos CP 1 
+4&1 -cos 9,)' + 8d,d2(l -cos cp,)(l- cos q2) +(pl sin cpl  + p, sin q2)' (15) 

over [O, n] x [0, n]. From the first derivatives of G we deduce that 

(i) (0, 0), (0, n), (n, 0) and (n, n) are stationary points for G 
(ii) a stationary point of G within the square 30, n[ x 10, n[ belongs to the curve defined by 

dl d2 -ttanq,=-tanq,. 
Pl P2 

These stationary points must be maxima for G and the values taken by G must be bounded by 
unity. 

(i) In any case, G(0, 0)= 1 (consistency) and (0, 0) is a maximum for G if 

[G&lcp2 (0, O N 2  - Gb; (0,O) G k  (0,O) < 0, 
Gq:(O,O) <O, Gk(O,O)<O, 

which are satisfied if 
P: P; __ + - < 1, i.e. (14); 
2dl 2d2 

moreover, G(n, n)< 1 yields 
d, + d ,  <*, i.e. (13), 

and (n, n) is a maximum for G when (13) and (14) are satisfied. In the same way, 
G(0, n)=G(n, 0)< 1 if (13) and (14) are satisfied. 

(ii) Within 30, n[ x 10, n[, the curve defined by (16) can be described parametrically as 

P2 tan pz = - u, Pl tancp,= - u, 
dl d2 

and we have to minimize G(u)=G(q, ,  q2). A similar analysis made by Cushman-Roisin'6 for 
the LFDF scheme exhibits maxima for c" when (pl, p,) + (0,O) and (pl, cpz) + (n, n). Thus we 
return to the previous case (i) and conclude that (13) and (14) are the stability conditions of 
the explicit scheme (6). 
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Geometrical interpretation 

The amplification factor gp(cpl, c p 2 )  may be written as 

gp((P1, cpz)=z, +zz, 

with 
zi+-  2dpi + 2dpi cos ‘pi - ipi sin cpi. 

In the complex plane, when cpi belongs to [0, n], zi describes the half-ellipse (Ei) with axes 
( 2 4 ,  pi) and centre Ci (4-2dpi ,0) .  The above conditions, (13) for (cpl, q 2 ) = ( n ,  K) and (14) for 
(cp ,, 50,) = (0, 0), present a clear geometrical support. Indeed (Figure l), (1 3) expresses that the 
sum of the moduli of zi is lower than unity towards x<O, and (14) expresses that the sum 
of the radii of curvature of the ellipses at point A (4, 0) is lower than unity: 

are such that 

P? 
2dPl 2 d P 2  

R 1 + R 2 + - + -  when (ql, cp2)+(0,0). 

Therefore the stability condition (14) is equivalent to 

R ,  + R ,  < 1 at (0,O). 

This geometrical interpretation confirms that the stability criterion 

G(cp1, cp2)G’l for (cpl ,  cpz)ECO, aI2 (17) 

is satisfied if (17) is valid near (0, 0) and (n, n). 
Moreover, we derive an important practical conclusion: Figure 1 clearly shows that the 

behaviour of G(cp,, c p 2 )  is very different according to whether (ql, cp2)  tends to (0,O) or to (a, a); 
near (0, 0), G(cp,, c p 2 )  may only slightly overlap unity (A always belongs to both ellipses), while if 

($ - 4dp2.0) (4 - 4dp,.0) 

Figure 1. Ellipses which support the geometrical interpretation 
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G(n, n) is greater than unity, we have G(cpl, cp2)> 1 in certain intervals of frequency [@l ,  7r] and 
[q2, a]. Therefore the condition on the time step resulting from (13) has to be strictly satisfied, 
whereas the condition resulting from (14) may be significantly overlapped. 

Corollary 

stability conditions (13) and (14) become 
For the isotropic problem (c1=c2=c,  K , = K 2 = K )  and a regular mesh ( h l = h 2 = h )  the 

} (MFTCS scheme), 
1 

1+u6 
r <  r Z 1 = -  { 401’ ’ (FTUW scheme), 

(Samarskii scheme). (20) 

The bounds ril and r i2 ,  which derive from (14) and (13) respectively, are given in terms of the cell 
Reynolds number ct= ch/2K. For the Samarskii scheme, r31 > r 3 2  for any a. 

Conditions (18), (19) and (20) must be compared with (27), (34) and (40) respectively in R1. The 
main difference concerns the MFTCS scheme, which does not generalize the 1D MFTCS scheme 
analysed in R1: the behaviour of the stability limit is a-* for large values of CI as opposed to a-l in 
the one-dimensional case. Figures 2-5 exhibit the theoretical and experimental stability limits of 
the above schemes plotted on the same scale. In these figures we observe that the stability 
properties of the schemes are almost identical for small values of a. For the most interesting 
problems (i.e. strongly convective problems, tl2 2) the theoretical and especially practical stability 
conditions of the Samarskii scheme are the most favourable. 

Remark. The bounds ri2 generally have to be strictly verified; however, this requirement is less 
rigorous when ct increases. The bounds iil , which only occur when o! is large, may be overlapped; 
the schemes usually remain stable when r = 2ri1.  These different types of behaviour are somehow 

Figure 2. MFTCS scheme: theoretical stability limits (r12(a) when a92 ,  rll(a) when a 2 2 )  and experimental stability 
limit (broken line) 
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Figure 3. FTCS scheme (i.e. FTUW scheme with 6=0) theoretical stability limits (rZ2(a) when a< 1, rz1(a) when a> 1) 
and experimental stability limit (broken line) 

Figure 4. FTUS scheme (ie. FTUW scheme with 6= 1): theoretical stability limit (rz2(a)) and experimental stability limit 
(broken line) 

attenuated because they correspond to unstable modes at the ends of the frequency spectrum 
(near zero or II). When unstable modes correspond to frequencies within 30, II [ (as for some three- 
level schemes; see Section 3), the stability condition must be rigorously verified. 

Finally, we must specify that the accuracy of the schemes is not considered there is no 
comparison between different numerical results. In particular, near the experimental stability 
limit the numerical solutions are frequently oscillatory before they attain a stable steady state 
solution. 

2.2. Implicit schemes 

The weighted implicit scheme associated with (6) is defined by 

( I  - BAt Aph) Y"+' = [I + (1 - 6)AtAPh] v", 8 €1 0, 13, 
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Figure 5. Samarskii scheme: theoretical stability limit (rS2 (a)) and experimental stability limit (broken line) 

where A,, and A,, are given by (8) and (9) and A,,, depends on 8: 

D:D;-~,D,, + D ; D ; - ~ , D ~ , , .  (22) 

The amplification factor relative to (21) is written as 

YP((P1’ vz)= 1 - ____ 2, given by (11). 
1+8Z,’  

We prescribe lyp(rp,, rpz)l<l over [0, 7c] x [0, 7c] and obtain the following theorem. 

Theorem 2 

When 820.5, the implicit scheme (21) is stable for all At and h. When k 0 . 5 ,  the scheme is 
stable if 

1 
dPI+dP2< -9  

P; 1 +-<- 
2d,, 2d,, 1 -28‘  

Proof: Taking the modulus of the amplification factor, we obtain 

R 
D2 ’ Jy,J2=1+- 

with 

R=4(1-28)[dP, (1 - cos ~ 1 )  + dp2(l - cos (PZ)]’ -4[d,,(l- cos ~ p l )  + dP2(l - cos (P,)] 

+(1-28)(~ulsincpl+~zsincp,)2, 

which must be negative. When 8 2 0.5, R is always negative; when 8 < 05 ,  we replace R < 0 by the 
equivalent inequality 

(1-28)R+1<1, 
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i.e. 

( 1  - 2( 1 - 20)[d,, (1 - cos rp,) + dp2( 1 - cos~p,)]}~ + [(l - 20)(p1 sinrp, + p, sinrp,)12 < 1. (26) 
Inequality (26) is identical to condition (15) expressing the stability of the explicit schemes, except 
that di and p i  are replaced by dJ1- 28) and pi(l - 28) respectively. Therefore we deduce the 

0 stability conditions (24) and (25) which generalize (13) and (14) for 8 ~ 1 0 ,  0 5  [. 

2.3. Nine-point non-viscous scheme 

in (7) defines the MFTCS scheme which generalizes the one-dimensional MFTCS scheme 
analysed in R1. However, in contrast to the 1D scheme, A , ,  does not completely eliminate the 
artificial viscosity produced by the basic centred (FTCS) scheme. Indeed, in the 1D case the 
artificial viscosity vanishes using a Lax-Wendroff correction based on the relation between @ u  
and the space derivatives for u(x, t), the solution of (P). 

A 

For 2D problems this relation becomes 

Zfu = C: I ~ : u  + c;a; u + 2c1c, I3&u +HOD, (27) 

where HOD represents higher-order derivatives (of order greater than two), and the correction of 
the diffusion terms in (7) does not take into account the cross-derivative C?;~U. 

Thus we define a nine-point scheme where the second-order difference operators are defined so 
as to balance the second-order derivatives in (27): 

This scheme will be denoted as the MFTCD (cross-derivative) scheme and may be considered as a 
particular case of (100) in Reference 3. For the corresponding weighted scheme (SMCD scheme) 

(1 - 8AtA4,) v"+' = [I + (1 - 8)L\tA,h] v", (29) 

we obtain the following partial stability results (dli given by (12a)). 

Theorem 3 

When 030.5,  the nine-point scheme (29) is stable for all At and h. When 8<05, a necessary 
stability condition is 

1 
d, ,+d c 

l2-. 2(1-28)' 

Prooj The amplification factor associated with (29) is given by 

with 

Z4 = 2d, I (1 - cos cpl) + 2dI2(1 -cos rp,) + p1 p 2  sin rp, sin rp2 + ipl sin rp, + ip, sin rp,, 

P; d l i = r i +  -. 
2 
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The analysis of 1g41 is closely related to previous stability analyses: 

(a) Near (0, 0), lg4(cp1, p2)1 < 1 for any value of 8; thus we do not have a stability condition 

(b) Near (n, x),  we obtain (30) which is identical to stability condition (24) obtained for the five- 
similar to (25). 

point schemes. 

The study of 1g4(cp1, cpz)l in ]O,n[ x 10, n[ is extremely involved. We observe that this modulus 
may be a maximum in 10, R [  x 10, n[, but it is not possible to deduce simple sufficient stability 
conditions. 

However, for isotropic problems and a regular grid we may obtain satisfactory sufficient 
stability conditions. 

Let us consider the explicit (MFTCD) scheme (the results for the &scheme are then straight- 
forward). We can easily observe that extrema for 1g4) occur when cpl = ‘pz = cp. Thus the MFTCD 
scheme will be stable if 

Igl= 1 1 - 4 4 1  - cos cp)- p’ sin2 cp - 2ip sinq 1 < 1, when cp belongs to 10, n[, 
i.e. 

191’ =64dZX + 16p4X( 1 - X)’ + 8p’( 1 - X ) X  + 64.p’ d X z (  1 - X )  - 16dX + 1 < 1, (3 1) 
where 

X=sin Z’p - in]O, 1[. 
2 

We obtain the following theorem. 

Theorem 4 

The MFTCD scheme is stable if 

with 

Remark. r < rl is the condition deduced from the necessary condition (30) in the isotropic case. 

ProoJ Inequality (31) yields the following condition for the cubic polynomial P ( X ) :  

P ( X )  = 2p4X - 8 p z ( p 2  + r)X’ + [8(r  + p2)’ - p 2 ]  X - 2r < 0, whatever X in 10, 1 [. (33) 

Note that P(0)  is always negative and P(l)<O corresponds to the necessary stability 
condition (30). 

Condition (33) is in particular satisfied if P does not present a maximum in 30, l[. P ( X )  presents 
at most one extremum in [0, 11 when X takes the value 

4(p2+r)-[4(p2+r)z+3p2/2]1/2 X ,  = 
3P’ 

(34) 



STABILITY ANALYSIS FOR 2D ADVECTION-DIFFUSION 589 

From P ' ( X )  we deduce the following. 

(a) P'(O)<O if 
a - J 2  

r<r*  = 4clzJ2 (and u > J2). 

(b) P'(0) and P'(1) are positive if 

J ( 2  - a2) (and a<J2). 
r<r**= 2c12J2 

(35) 

(36) 

In both cases P ( X )  does not present a maximum and the scheme is stable. 
When a<a,  =,/%, we have 

rl <r**; 

Now, when neither (35) nor (36) is satisfied, i.e. if 
the necessary condition r < rI (see remark above) is then sufficient. 

U€CJ% J21, =Cr**, r l l  

> J2 ,  =[I*, r, l ,  
or 

we prescribe P(X, )  <O.  Replacing p = 2ar, we obtain the following condition for the quartic 
polynomial Q(r): 

(37) 
This condition is satisfied for r=r** and r=r*. Thus the first root of Q greater than r** or r* 
yields a stability bound r, for r. 

This bound may be obtained 

(i) either by computing (for given a) an approximate value from the starting value r(O)=r* 
or r** (following a) 

(ii) or by defining the smallest interval with centre r* or r** which does not contain any root 
of Q. 

For (ii), Henricil8 gives different estimates based on the local development of Q. We must 
calculate the coefficients 

Q(r)= -2M8a8r4 -2560a6r3 + 128u4(a2 - 9)r2 + 16a2(13a2 - 14)r-2a4 + 71a2 - 16 < O .  

and study 

This analysis is rather involved and does not generally provide a precise estimate for rs .  
From this remark we infer that it would be preferable to obtain a constant C such that 

With C =  1/2,/6 we have 

> O  on ]a , ,  a 2 ]  with U2>90. 



590 A. R E A L  

Therefore r < r2 = 1/2a,/6 is a sufficient stability condition in the useful area for the cell Reynolds 
number a. 0 

Figure 6 shows the curves rI ,  rz, r** and r* in the (a, r)-plane and the experimental stability 
limit. We may observe that the sufficient conditions (heavy line) of Theorem 6 are quite realistic. 

Note that the 8-MCD scheme is stable when 8>0-5 and if 

rs given by (32), when 8<0-5. (38) 1-28, 
‘ S  r <  - 

The MFTCD scheme generalizes the 1D MFTCS scheme analysed in R1; its main (and 
interesting) characteristic is the absence of artificial viscosity. This scheme does not present a 
stability domain larger than those of five-point schemes previously analysed. Moreover, the 
matrix properties of nine-point schemes are less favourable (sparsity, monotonicity, etc.). 

The present incomplete analysis--excluding accuracy parabolicity and so on-does not 
generally justify the utilization of the second-order nine-point MFTCD scheme. 

3. THREE-LEVEL SCHEMES 

In R2 we showed that three-level schemes did not offer significant advantages over the two-level 
schemes studied in R1, particularly for strongly convective problems. Thus we will not give a 
detailed analysis of these schemes. 

Figure 6. MFTCD scheme: theoretical stability limits (rl(a) when a<a, =J(1.5), r2(a) when a z a , )  and experimental 
stability limit (broken line) 
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The weighted schemes are defined by 

( e  + +)u;,; 1 - 2eq, + ( e  - +)u;,j 1 = &A, fii, j ,  e E [o,11, (39) 

with Ci, a linear combination of 05 j ,  u;.j and u;,; and A, one of the space difference operators 
studied in Section 2. These schemes are deduced from two-step schemes used in differential 
equations, so their stability properties are essentially independent of the space operators. 

The weighted scheme given by Zlamal‘g is defined by (39) with 

This scheme is A,-stable when 8 > 0 and may be considered as an optimal weighted scheme. 
The stability of 2D LF schemes must be specifically analysed. For instance, the stability results 

of the 1D LFDF scheme are not valid for 2D problems.16 We give below the stability analysis of 
2D LF schemes generalizing (4) and (5). For these three-level schemes, Fourier analysis yields an 
amplification matrix, the eigenvalues of which must belong to the unit disc. 

The corresponding quadratic eigenvalue equation 

a2v2 + a,v + a, = 0 (40) 
is analysed through the Schur-Cohn (SC) lemma.2,7’18 

SC lemma 

The roots of (40) lie inside the unit disc if 

6, = lao 12- la, 12 CO, 

l ~ o ~ l - ~ z ~ l l ~ l ~ l l .  

3.1. LF2 Scheme 

The LF2 scheme is defined by 

where B, is the five-point centred difference operator for the diffusion term. 
From the eigenvalue equation of the associated amplification matrix, 

vz { 1 +46[r1(l -coscp,)+ r , ( l  -coscp,)]} + 2iv[p1 sincp, +p,  sincp,] 

+4(1-8)[rl(1-coscpl)+r,(l-coscp,)]-1=0, (44) 

we deduce the following stability result. 

Theorem 5 

The LF2 scheme (43) is stable if 
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Proof: We apply (41) and (42) to the quadratic equation (44) (recall that ri=KiAt/hT and 

(i) I a, 1’ - I a, 1’ = - 1 + 2 [ r ,  (1 - cos q1 ) + r , ( l -  cos q2)] < 0 

pi= ci At/hi) .  

which is always satisfied when 8 2 0.5. 
If 19<05,  we obtain 

1 
r1 + r 2  <- 4(i -28) .  

(ii) lu,a, - a,d, 1 < 16, I 
yields 

This inequality is different from those analysed in Section 2 and, in particular, cannot be 
geometrically viewed in a simple way. 

r(n, n)< 1 corresponds to (46) and r(0,O) is always verified. Thus we have to study 
maxT(q,, q,) in the open domain 10, n[ x 10, a[.  The system Yp, =0, rV2 = O  gives one value 
(qlm, q,,) in ] x / 2 ,  n[ x 1 4 2 ,  n[. Prescribing T(qlm, qZm)< 1, we obtain the condition (45) after 
some algebraic calculations. We can easily verify that (45) implies (46); (45) is therefore the only 
stability condition for the LF2 scheme. 

3.2. LF3 scheme 

In the LF3 scheme B, is applied to a convex combination using the three levels n, nf 1: 

The eigenvalue equation of the associated amplification matrix is given by 

V Z ( 1  + 4 ~ [ r , ( l - c o s ~ , ) + r , ( l - c o s ~ , ) l }  
+ 2v {2(1- 28)  [rl (1 - cos ql ) + r2(  1 -cos q,)] +i [ p ,  sin q1 +pz sin rp, I} 
- 1 + 4 B [ r , ( l - C O S 9 , ) + r , ( l  -COSCp,)]=O. 

The SC lemma yields the following theorem. 

Theorem 6 

The LF3 scheme is stable if /?>025 and 

Proof: The proof is straightforward. 

(4 6 = la, I’ - la, I’ = - 16p[r, (1 - cos q1 ) + r,(l - cos q,)] 
is always negative. 
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(ii) I aOal - a2a, I = I - 8(1- 28) [ r ,  (1 -cos ‘p, ) + r2(l  - cos q2) ]  

+ 16iP [rl (1 - cos cpl ) + r2(l  - cos cp2 )I (pl sincp, + p 2  sin cpz I < 16, I 
implies /?>0.25 and 

41p1 sin cpl + p 2  sin cp2 )2p2 < 48 - I ,  i.e. (49). 0 

3.3. LFDF scheme 

The LFDF scheme which uses an explicit Du Fort-Frankel approximation for the diffusive 
term is written as 

For this scheme the stability results were frequently incorrect or i n ~ o m p l e t e . ’ ~ * ~ ~  Cushman- 
RoisinI6 gave the correct result via some rather involved analytical work. The SC lemma 
supported by geometrical considerations gives the following theorem. 

Theorem 7 

The LFDF scheme (50) is stable if 

(5 + $) (Il + r2 ) < 1. 

Proot The amplification matrix relative to (50) yields 

(1 + 2r1 +2r,)v2 -2v(2r1 coscp, + 2r, cos cp2 -ipl sincp, -ip2 sincp2)-(l-2rl -2r , )=0.  (52)  
(i) l a o ~ 2 - ~ u 2 ~ 2 = 6 1  = -8(r1 +r2)<0.  

(ii) l i i o u , - - a 2 i i , ~ < ~ 6 , ~  

yields 

14r, cos ‘p, + 4r2cos cp2 + 2(r1 + r2)(ip1 sin cp, + ip2sin pZ)l < 4(r1 + r 2 ) ,  

i.e. 
2 ( r1 - cOscpl + rz -) ‘OS cpz + (rl sin cpl + r,sin cp2 12 < 1. 

r l+rz  r1+r2 

The above inequalities may be geometrically interpreted by considering both ellipses with 
centre 0 and semi-axes (ri /(rl  + r 2 ) ,  pi) (Figure 7). We necessarily prescribe pl + p 2  6 1 (vertical 
semi-axes); the sum of horizontal semi-axes is always equal to unity. Moreover, we assign to the 
sum of the radii of curvature a value less than unity when (ql, c p 2 )  + (0, 0) (see Section 2.1): 

Thus we derive the stability condition (51). 0 
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‘1 ‘2 

1 2 ‘1 + ‘2 

Figure 7. Ellipses illustrating the stability analysis of the LFDF scheme 

-- r + r  

3.4. LF Schemes: conclusions 

The stability properties of the 2D LF schemes do not exactly generalize the results obtained for 

(a) The stability condition (49) of the LF3 scheme is identical to (63) obtained in R2. 
(b) The stability condition (45) of the LF2 scheme is different from (54) obtained in R2; but, for 

the isotropic problem (pl  = p 2 ,  rl =r2), (45) may be reduced to the 1D stability condition. 
(c) The stability condition (51) of the LFDF scheme is different from (68) in R2, and even with 

isotropic coefficients, (5 1) becomes 

the 1D schemes in R2. 

p < i ,  i.e. r<l/4a, (53) 
instead of 

p < l ,  i.e r<1/2u, 

for the 1D scheme. 

For isotropic data we plot in Figure 8 the curves rsi(a): 

stability limit of the LF2 explicit scheme; 
1 

4[1+,/(1+a2)]’ rs, (4 = 

rs2(ct)= 1/8a, stability limit of the LF3 scheme with f i = f  (Lees’ scheme”); 

rs,(a)= 1/4c(, stability limit of the LFDF scheme. 

Note that the experimental stability limits are generally very near the rsi. 
These schemes, centred by construction, introduce parasitic oscillations in the numerical 

solutions when CI> 1. Moreover, recall that the best stability properties of the LFDF scheme when 
CI is not too large are misleading because of the non-consistency of the scheme with (P). This fact 
requires the use of r significantly smaller than ro3. Thus the assertion ‘LFDF scheme widely used 
for advective-diffusive problems’16 must be very cautiously considered. 
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Figure 8. Theoretical stability limits of the LF schemes: LF2 scheme (rs,(a)), LF3 (Lees) scheme (rs2(a)), LFDF scheme 
(Tsr  (a)) 

4. CONCLUSIONS 

This paper is concerned with stability results for two- and three-level 2D schemes which 
generalize the schemes analysed in our previous papers R1 and R2. We have focused on 2D 
schemes, the geometrical features of which are easily considered, but the stability properties of 3D 
schemes are identical to Theorems 1-7 (for some two-level schemes, Hindmarsh et aL3 gave these 
results in the n-dimensional case). 

Table I summarizes the stability results of this paper. For different values of the cell Reynolds 
number CI we give the theoretical (It) and experimental ( I , )  stability limits of the mesh ratio r when 
using two- and three-level explicit schemes. 

We observe that re is either very near or significantly larger than r,. We have already outlined 
(remark in Section 2.1) that this fact is dependent on the frequency of unstable modes: near zero, 
near n or in 10, n[. 

In R1 and R2 we extensively analysed the properties of the solutions of difference schemes. In 
multidimensional problems the results which only depend on the time discretization are retained: 
A-stability and positivity. 

Concerning the important notions such as artificial viscosity and parabolicity (i.e. mono- 
tonicity of A,,) we observe large differences between 1D and 2D schemes. Even for ‘product 
schemes’ (five-point in Rz, seven-point in R3) the 2D properties are not exactly the same as the 1D 
results, and since we consider nine-point schemes, the properties of the space discretization must 
be completely analysed. 

In particular, the parabolicity, which is essential to the absence of parasitic oscillations, results 
from the monotonicity of the space difference operator A, .  Some classical results for elliptic 
problems (e.g. those of Bramble and Hubbardzz,23 and Pricez4) may be applied in this context. 

Finally, we must keep in mind that the analysis of the linearized problem (P) is mainly 
motivated by fundamental quasi-linear problems, e.g. the Navier-Stokes equations. In this case, 
implicit two-level schemes and weighted three-level schemes yield non-linear systems, and their 
use, in particular for multidimensional problems, requires important auxiliary work. 
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Table I. Theoretical ( r , )  and experimental ( re )  stability limits of the 
explicit schemes for some values of the cell Reynolds number a 

a 

025 075 2 5 10 
~ 

MFTCS r, 0.243 0.203 0.125 0.02 
*O 0245 0.215 0.135 006 

Samarskii r, 0.235 0.189 0107 0.048 
re 027 0-275 0205 0.105 

FTCS r, 025 0-25 0061 001 

FTUS r, 0.2 0.143 0.083 0.042 
(6 = 1) re 0.22 0.185 0.13 0.075 
MFTCD r, 0.243 0-203 0102 0.041 

re  0.245 0-22 0.13 0.055 
0.123 0.111 0.077 0.041 

(6 = 0) re 0.125 0.115 0.078 0.042 
LFDF r, 1 0333 0125 005 

re 2 0.44 0-135 0051 

(6 = 0) re 0.255 0.28 0.1 1 0.021 

LF2 I ,  

0.005 
0.02 
0.025 
0055 
00025 
0006 
0.023 
0045 
002 
0028 
0.0226 
00228 
0.025 
0025 
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